
React &
Reactive Programming

Ziming Miao @ Traintracks.io

Introduction

• 苗梓铭｜Ziming Miao

• 2011-2014 FE Lead of
Wandoujia

• 2014-present Senior Engineer
of Traintracks.io

• Working on UI development,
big data analysis, etc.

–「孙⼦子算经」

「今有雉、兔同笼，上有三⼗十五头，下九⼗十四
⾜足。问雉、兔各⼏几何？」

「上置三⼗十五头，下置九⼗十四⾜足。
半其⾜足，得四⼗十七。以少减多」

 x + y = 35
2x + 4y = 94

The way we’re doing
rendering is inefficient

Problem w/ DOM

• HTML standard is quite loose, makes parser
slow in exchange to be error-proof.

• DOM is stateful, but difficult to manage changes
or get notified.

• Direct DOM manipulations are boring and
repeated.

DOM used to be the only way,
but not the best

What is React?

template

handler

binding

life-cycle callback

View layer framework,
or

“Abstraction of drawing layer”

http://jiyinyiyong.u.qiniudn.com/react-demystified/r2.png

What u see

CanvasCocoa

1. replace underlying drawing layer

2. async rendering

http://jiyinyiyong.u.qiniudn.com/react-demystified/r2.png

Reactive

–Wikipedia: Reactive programming

“… This means that it should be possible to express
static or dynamic data flows with ease in the

programming languages used, and that the underlying
execution model will automatically propagate changes

through the data flow.”

http://en.wikipedia.org/wiki/Reactive_programming

http://en.wikipedia.org/wiki/Reactive_programming

1. this is for a specific time point

2. What if people changes by time?

3. Each procedure gets all the

information it needs. No global
context, reproducable

JavaScript enables you
processing data functionally

f(x) = x

f(x) = x => A

A = (f, x)

Component = (render, state)

Component

render

state

Features

• Predictable, advanced in testing & tooling

• Unidirectional data flow, leans on central data
storage

• All functional programming benefits

How could you imagine to
implement App-level undo & redo

functions by DOM?
GoyaPixel

http://www.apple.com

Unidirectional data flow

https://facebook.github.io/flux/docs/overview.html#content

state render

https://facebook.github.io/flux/docs/overview.html#content

Core concepts

• Abstraction of drawing layer, portable

• Reactive, unidirectional data-flow

• Functional friendly, immutable, multithreading

• Balance between productivity and performance

